← Back > Images For > Electric Current Flow

Viewing Pictures For (Electric Current Flow)...

Electric Current Flow

Wiki info

In a metal, some of the outer electrons in each atom are not bound to the individual atom as they are in insulating materials, but are free to move within the metal lattice. These conduction electrons can serve as charge carriers, carrying a current. Metals are particularly conductive because there are a large number of these free electrons, typically one per atom in the lattice. With no external electric field applied, these electrons move about randomly due to thermal energy but, on average, there is zero net current within the metal. At room temperature, the average speed of these random motions is 106 metres per second. Given a surface through which a metal wire passes, electrons move in both directions across the surface at an equal rate. As George Gamow wrote in his popular science book, One, Two, Three. . . Infinity (1947), "The metallic substances differ from all other materials by the fact that the outer shells of their atoms are bound rather loosely, and often let one of their electrons go free. Thus the interior of a metal is filled up with a large number of unattached electrons that travel aimlessly around like a crowd of displaced persons. When a metal wire is subjected to electric force applied on its opposite ends, these free electrons rush in the direction of the force, thus forming what we call an electric current. "

Natural observable examples of electrical current include lightning , static electricity , and the solar wind , the source of the polar auroras .Note that the equation above uses the symbol I to represent the quantity current.Our editors will review what you've submitted, and if it meets our criteria, we'll add it to the article.

Premiumtrade.info - 2018.